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Measurement of the pressure-dependence of elastic constants of crystals yields information pertinent 
to the experimental equation of state of solids, to theories of cohesion of solids, and to certain aspects of 
anharmonicity of lattice vibrations in solids. This paper discusses some of the information which has been 
provided by such measurements carried out on copper, silver, gold, aluminium, sodium, lithium, ger­
manium, silicon and rubidium iodide. Experimental aspects are presented, and a few suggestions are made: 
for extending the direct measurements of anharmonicity of lattice vibrations. . 

Introduction 
The compressibility and variation of compressibility of crystals with pressure has long been 

the subject of quantitative experimental investigation by Bridgman whose results have provided 
the basis of many theoretical investigations of cohesion, notable among these are the works of 
Wigner & Seitz,1 Frohlich,2 and Bardeen3,4 on compression of the alkali metals. Implications 
about the thermal properties of solids have been based on Bridgman's dilatational data, especially 
by Slater5 whose establishment of the relation betweell Griineisen's gamma"' and the pressure­
dependence of the compressibility is familiar. Swenson is making very careful and elegant 
measurements of the compression of solids over a wide range of temperatures down to almost 
liquid helium temperature to obtain experimentally, temperature-dependent equations of state.6 
One may reasonably ask then whether it is worth while investigating the 'pressure-dependence of 
the shear elastic constants of crystals as well as that of the bulk modulus. It is hoped that the 
following discussion will serve to introduce the experimental aspects of the subject and to justify 
its pursuit by a brief indication of the sort of information about crystal binding forces and about 
anharmonic thermal properties of solids which reveals itself in interpretation of the data. 

At the present time, few measurements have been made in this field. The pressure-dependence 
of the shear stiffnesses of a few polycrystalline solids has been studied by Birch,7 and by Hughes.8,9 

LazaruslO in a pioneering paper reports on studies on single crystals of potassium and sodium 
chloride, copper-zinc, copper and aluminium with the ultrasonic pulse echo method. Very careful 
measurements on pressure- and temperature-dependence of elastic constants of germanium have 
been made by McSkimmin,ll and mention must be made of the interesting work done by 
Anderson12 seeking values of thermodynamic functions by measurements of the pressure- and 
temperature-dependence of the elastic constants of fused silica. Some interesting Russian work 
has appeared on the pressure-dependence of the elastic constants of cerium through the phase 
transition pressure at about 7·6 kb.13 The remainder of the investigations, including those of 
copper, silver, gold,14 aluminium, magnesium,15 silicon,16 sodium17 and lithium18 have been done 
at Case Institute of Technology, and our group at Princeton is engaged at the moment in the 
study of rubidium iodide.l9 

This paper is divided into three parts; (1) a discussion of techniques of measurement; (2) the 
interpretation of the results in terms of the various contributions to the cohesive energy of crystals; 
and (3) the implications of the results regarding the anharmonic thermal properties .of solids. 
Some limitations and extensions of the methods will be considered briefly. 

(1) Experimental methods 
Most of the results to be discussed in this paper were obtained by the ultrasonic pulse echo 

method of measuring elastic constants. 20,21 This non-resonant method is well suited to the 
problems associated with an ambient consisting of a fluid at high pressure, but is probably less 
accurate than the phase comparison method used by McSkimmin22 and Anderson.12 Only the 
ultrasonic pulse echo method is considered here: for a discussion of other methods of measuring 
elastic constants reference should be made to Huntington's review article.23 

The apparatus required for these expetiments consists of a pressure-generating and measuring 
system, and a thick-walled steel vessel or sufficient size to contain the sample crystal, with one 
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electlic lead in for the pulsed radio-frequency (r.f.). The pressure-generating system used for 
most of the measurements has been a fairly conventional pump with intensifier,24 but a new 
system incorporating only a direct pump has been used to 5kb with complete reliability, with 
occasional runs to IOkb. It uses are-entrant seal25 on the critical high-pressure piston closure. 
Seals at other closures have been effected using armoured O-rings.25 A manganin wire coil with 
nominal resistance 300 ohms has been used as the pressure sensor,26 a conventional Wheatstone 
bridge being used to measure the changes of its resistance. The freezing pressure of mercury at 
0°, 7640 kg/cm.2 after Bridgman,26 has been taken as the high-pressure fixed point. Electrical 
leads have been made with the conventional Bridgman pipestone cones2? and with careful fitting 
have proven completely reliable. Di-2-ethylhexyl sebacate (Octoil-S* or Plexol 201 t) has been 
used as pressure fluid except for work with the alkali metals, where the high chemical reactivity 
demanded use of an isobutane- mineral oil mixture. The sebacate has the advantages of 
excellent lubricity and a low pressure coefficient of viscosity (silicone fluids are poor on both 
these points). All the above equipment has functioned for long periods of time with a 
minimum of maintenance. 

Fig. 1 is a block diagram of the electronic components of a typical (and commercially avail­
dble) ultrasonic pulse echo setup for measuring elastic constants of single crystals. The measure­
ment to be made is basically one of time of travel of a pulse of 10 mc acoustic waves down the 
sample and back. The time mark generator is the heart of the apparatus, producing a set of 
markers to which the time measurements are referred. Stable markers are controlled by an 
oscillating quartz crystal maintained at constant temperature by an oven to assure its frequency 
stability. In operation, the time mark generator triggers simultaneously the pulse generator 
which emits about a 1 fLsec. burst of 10 mc oscillations, and the sweep of high speed oscilloscope. 
The pulse of r.f. excites a 10 mc resonant X- or Y -cut quartz transducer cemented to the specimen 
crystal, generating an acoustic pulse of appropriate polarisation which echoes back and forth in 
the crystal. A variable sweep delay network on the oscilloscope calibrated against the time mark 
generator, enables precise measurements of the pulse transit tinle and especially of the change of 
transit time with pressure or any other independent variable. An invaluable improvement in 
technique for measuring changes of transit time was introduced by Eros & Reitz28 who altered 
the electronics to permit display of the unrectified pulse whereas previously only the pulse 
envelope could be displayed. This removed the problem caused by changes of pulse shape with 
pressure. 

The equation of motion describing the passage of an elastic wave through the crystal yields 
equations of the form C = pv2, where p is the density of the crystal, v the velocity of the wave 
under consideration and C is the stress- strain ratio for the specific distortion caused by passage 
of that wave.29 (The derivation, made treating the crystal as an elastic continuum is of course 
valid only if the wavelength is very much larger than the inter-ionic spacing, a condition rigorously 
met by the lO-mc disturbances applied in the measurements.) For a cubic crystal cut with [110] 

Fig. 1. Block diagram of ultrasonic pulse echo com-
ponents 

A Time mark generator (Tektronix TM 181 with crystal 
oven) B Pulse generator (Arenberg PG-650C) C quartz 
crystal transducer D single crystal sample E pre-amplifier 
(Arenberg PA- 620-SN) F wide band amplifjer (Arenberg 
W A- 600-B) G oscilloscope (Tektronix Model 585 with 
Type CA dual traced plug-in unit. The Oscilloscope sweep 
delay helipot has been replaced by a more sensitive voltage 
divider) 

r L..-------, o 
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* OctoiI-S is ~ vacuum diffusion pump fluid sold by Consolidated Electrodynamics Corp., Rochester, New York. 
t Plexol201 is available from Rohm & Haas Chemical Co., Resinous Products Division, Philadelphia 5, Pa, U.S.A. 
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acoustic faces (see Fig. 2), the complete set of three independent elastic constants C - C44, 

C' == 1/2 (Cll - C12) and Cll' == Cll - C' + C, are given directly by PVi2 where the Vi for the 
three constants C, C' and Cll' are the values for (i) a transverse wave with particle motion along 
the [001] direction (C), (ii) a transverse wave with particle motion along [1 10] (C') and (iii) a 
longitudinally polarised wave (Cll'). Then the adiabatic bulk modulus Bs = Cll' - C44 - 1/3C'. 
For the usual metallic anisotropies, C> C', somewhat greater precision of the measurement of 
B, may be obtained by use of a second crystal with [100] orientation. Then Cll = pv2 for the 
longitudinal wave, and Bs = Cll -4/3 C', usually a relatively small correction from the direct 
measurement, e.g. about 20 % in the case of silver, 12 % in sodium, is necessary. The acoustic 
wave velocities are of course the quotients of twice the length of the sample between acoustic 
faces (L), and the transit time t of a pulse, measured with the calibrated sweep delay, i.e. 

. . d InC 1 2 dt 
C = p4L2/t2. If the pressure is changed, p, Land t change, Yleldmg dP = + 3B

T 
- t . dP 

for small changes. The first term arises from changes of Land p with pressure. The isothermal 
bulk modulus must be computed from the measured adiabatic bulk modulus from the thermo­
dynamic relation 

B - B ( TVf32BT) 
s- T 1+ Cv 

where f3 is the volume coefficient of thermal expansion, T the absolute temperature, Cv and V 
the heat capacity and volume per mole. The second term is given by the data taken, i.e. change 
of transit time with pressure. In our technique the change is always measured with respect to a 
nearby time marker to reduce any effects due to time zero drift. Figs. 3 and 4 show typical curves 
of change of time of echo arrival relative to a nearby time marker versus change of the coil 
resistance of the pressure gauge, the latter being proportional to pressure change. [Note the 
complete absence of hysteresis between points taken with increasing pressure and those taken 
with decreasing pressure. This is important because it is contrary to the assumption that length 
hysteresis is a natural phenomenon in most samples, even if the pressure is truly hydrostatic.6 The 
assumption is based on observation of apparent hysteresis of length in compression determinations 
made with lever piezometers, and seems to indicate the presence of friction somewhere in the 
length-measuring apparatus.] From these data and values of the constants at zero pressure, we 

calculate the quantities dCfdP or the more characteristic quantity d InCfd lnr = _ 3gT 
• ~~ 

which is given the title the' logarithmic hydrostatic strain derivative' or just' strain derivative '. 
The precision of such measurements has recently been investigated extensively by Corll and 
Smith at Case Institute on single crystals of silver, with orientations [l00], [110] and [111]. con­
firming earlier estimates of about 0'3% in the C, 3% in the derivatives.3o The precision will of 
course be higher in the more compressible materials for which the change in the stiffness is large 
over the pressure range used; and lower for materials less compressible than silver. This precision 
is we think remarkable and implies that the use of ultrasonic methods to obtain equations of state 
of solids deserves serious consideration, yet the only serious work in such a direction is that of 
Anderson12 on fused silica. Our own measurements have been completely aimed at finding deriva­
tives, and attempting to evaluate them at zero pressure. Thus, in the case of sodium, the data 
taken were arbitrarily confined to a pressure range less than 2kb and no special attempt was made 

[001] 

Fig. 2. Typical specimen size and shape 
X- or Y-cut quartz crystal transducers 
generate longitudinal or transverse 
waves respectively 
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to interpret the data in terms of !:J. VjV over a wide range of pressures. Measurements taken over 
the more extended range to.7·8 kb revealed no difficulty (see Fig. 4), and, indeed no real problem 
should appear in extending such measurements to a much higher pressure or to higher or lower 
temperatures. The employment of a larger modelofthe Swenson modification31 ofthe high-pressure 
apparatus of Dugdale & Hulbert32 for use at temperatures near 4·2 OK should even permit very accur­
ate PV measurements to be made acoustically (in materials which do not have structure transform­
ations) in this temperature range. As will beseenin the third section of this paper, the breakdown of 
the assumption that Poisson's ratio is independent of pressure is very serious in discussions of the 
lattice contribution to the thermal expansion. Yet, if one uses P-V data alone as Slater was forced 
to do (for lack of shear data), no knowledge of pressure dependence of the Poisson ratios is 
obtained. Further, regarding accuracy of measurements !:J. V vs P reference is made to pp. 83-85 
of Swenson's recent review article.6 We agree completely that the best !:J. V vs P data can be 
provided by careful acoustic measurements. A discussion of the use of the acoustic method for 
determining parameters of the equation of &tate and values of thermodynamic functions, is given 
by Anderson.l2 It is suggested that those who contemplate highly refined P-V-T measurements 
on solids, at least for those cases where single crystals may be obtained, should consider whether 
extension of this method to low temperatures using techniques perfected by Swenson6 or to high 
temperatures using a stepped crystal as has been done by Bernstein,33 would not produce results 
sufficiently more reliable than those obtained by direct compression of polycrystalline materials 
to warrant the additional effort required. 
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Fig. 3. Typical data plot showing difference between the 
time. teo of arrival of one of the maxima of echo No. 7 of the 
longitudinal wave in a 3'164 cm. long aluminium crystal and 
a fixed time-marker, tm• as a function of pressure-gauge coil 
resistance. Rg 
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Fig. 4. Change with pressure of the time of arrival of an 
echo for the C .. wave in sodium 
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(2) Interpretation of data 

5 

To introduce the subject of interpretation of the data obtained in terms of lattice inter­
actions, consider nlble I which gives values of the elastic constants and their strain derivatives 
for a variety of materials. 

The measurements have all been made at room temperature. Values for germanium were 
measured by McSkimmin at the Bell Laboratories and for rubidium iodide at the Princeton 
University and the remainder at the Case Institute of Technology. Note that dimensionally 
elastic constants have the form e2jr4 where e is the electron charge and r a linear dimension. 
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The coulomb contribution to the elastic constants arises from the change of the classical electro­
static energy of a structure by strain, assuming that no re-distribution of charge is brought about 
by the strain. Analytically, the coulomb contribution to the elastic constants has the form e2/ r4. 

For example, in the case of the sodium chloride structure, the coulomb contributions to C and C' 

C 1·28 e2 d C' 1·33 e2 hR· h ' ·' .. h are coul = -_. - an coul = - -- . - were IS t e catIOn-amon separatIOn In t e 
2 R4 2 R4 

I F hi · ·b · hI' d In C 4 E . crysta. or t s Important contn utlOn to tee ashc constants, dIn r = -. xpenmentally, 

it is observed that the values range from - 2·8 to -21, indicating that important contributions 
to the C's are non-coulombic. It is in these differences that the effects of strain on the various 
contributions to the crystal cohesive energy are sorted out. 

Formally, one can write an elastic stiffness at OaK as the second derivative of the crystal binding 

energy with respect to the appropriate strain, i.e. QC = 8;~o where Q is the crystal volume, 

Uo the total cohesive energy, € the strain associated with the constant C. The differentiating 
with respect to In r, r being a distance in the crystal, 

Q dC + 3QC = 8
2
Uo 

d In r 8 €28 In r 

F or the sake of definiteness, consider the series: Uo, the crystal energy at OaK, the equilibrium 
condition, the bulk modulus, and the strain derivative of the bulk modulus, all taken at OaK, for 
a simple model of the binding energy of NaCl, following the treatment in Kittel,29 with modifi­
cations and addition of d BT/d 10 r. Numbers above the terms in the equations give their relative 
contributions. 

Uo = Nc/> where N = number of molecules, c/> = energy per molecule, Uo = crystal energy. 
I 9 

Uo = N ( ~n - a;2) a model in which the second term is the electrostatic energy of the 

assembly of positive and negative ions, the Madelung energy, the first term a repulsive interaction 
between ion cores, varying as a higher power of R, the cation- anion separation in the crystal. 
A, An> nand 0: are constants. 

dUo dUo dR 
Now p = - d V = - dR . d V ' V = 2 NR3 

N [ n "'An ae2
] 

so that p = - 1/3 2NR3 - ~+ Ii 

h ·lib . . 0 . n ,.\An ae2 0 at t e eqUJ num spacmg, p = ,I.e. - ~ + R = . 

The bulk modulus BT = - V (::)T 
3 1 

N [ n "'An 4ae2
] 

BT = 9V (n + 3) . ~ - R 

a1 d 9 4 d uili·b· d·· n AAn ae2 

using n ev uate, ., an eq num con Ihon ~ = If" . 

The strain derivative of Dr is given by: 
10 I 

dBT _.!!... [_ 2 • n,.\An 16ae2
] (_ dBT ) 

dIn R - 9V (n + 6n + 9) Rn + R , - -3 BT dP I 
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Table I 

Values of the hydrostatic strain derivatives of elastic constants of materials, dd ~ ~ . 

For reference, values of the elastic constants in units IOU dyne cm.-2 are placed 
in parenthesis behind the corresponding strain derivative. The notation C == C •• , 

C' == 1/2(Cu - Cn) and Bs == 1/2 (Cu + 2Cn) has been used. 

din C din C' d InBs 
dInr dInr dInr 

Na -7·2 (0'042) -7·2 (0 '0058) - 10'1 (0'066) 
Li -4·1 (0,088) -2·8 (0'010) (0'012) 
AI - 17·8 (0,283) -15·2 (0,232) -14·9 (0'764) 
Cu - 12·5 (0,751) -9,93 (0'233) -16·3 (1'37) 
Ag - 15·2 (0'461) -12·73 (0'153) -18·2 (1'04) 
Au -21·2 (0'420) - 14·80 (0'147) -18'6 (1,73) 
Ge -306 (0'673) -0,58 (0'403) - 13,6 (0'751) 
Si -3,0 (0,796) -0,30 (0'511) -15·3 (0,993) 
RbI +5'8 (0·0287) (0'112) (0,106) 
NaCI -1·84 (0,128) -16·7 (0,184) -16·4 (0,245) 
KCl +3-35 (0'630) -15·9 (0'170) -12·2 (0'184) 

The relative contributions of the short-range repulsion to coulombic terms for each are: short 
range/long range Uo, 1:9; Ro, 1: 1 ; BT , 3: 1; dBT , 10: 1. 

This sequence illustrates the relative increase in the importance of rapidly varying short­
range contributions to the binding energy, as successive derivative quantities are considered. 
This is relevant even in those materials such as the alkali metals where the ion core contribution 
to the elastic constants is considered unimportant, since the apparent absence of a short-range 
contribution to the pressure derivatives provides very convincing evidence of its absence as a 
contributor to the cohesive energy, the equilibrium condition or the elastic constants. The 
equations for the conu.:ibution of the short-range terms (nearest neighbours only) and the coulomb 
term to the pure shear stiffnesses in the NaCI structure are : 

C = - 2R· - + 1·28 -N [dW e
2

] 

V dR R R = Ro 
C' = - R2. - + R · - - 1·33 -N [d2 W dW e2

] 

V dR2 dR R R = Ro 

dC N[ d2 W dW e2
] 

d In R = V 2R2. dR2 + 4 R· dR - 4 X 1·28 . R R = Ro 

de' N [d3 W d2 W e2
] 

d In R = V R3. dR3 - 2R· dR2 + 4 X 1·33 . if R = Ro 

In these equations W(R) is the repulsive interaction energy of the anion-cation pair. The terms 
containing e2/R are the electrostatic contributions to the elastic constants and their derivatives 
and are due to the change of the Madelung energy by shear strain. Note that because of the 
geometry of the lattice, the term containing d2W/dR2 is absent in the equation for C, and the 
term containing d3W/dR3 is missing from the equation for dCfd In r. For the power-law potential 
used above, the equations become: 

C=- -2n' -+ 1·28·-N [ "An e
2 

] 

V R~ Ro , 
dC N [ "An e

2 
] -- = - (2n2+6n)· - -4 X 1·28· -

dInr V R~ Ro 

C' =- n2 • _D -1.33 '-N [M e
2 

] 
V R~ Ro , 

de' N [ "AD e2 
] - - =- (n3 +3n2+4n)· -+ 4 X 1·33· -

dInr V R~ Ro 

Physically and macroscopically the elastic constant C can be thought of as the stress-strain ratio 
for a simple infinitesimal strain changing only the angles between [100] type directions of the 
crystal and e' as the same ratio for an infinitesimal volume conserving 'Strain generated by 
compressing one cubic direction of the crystal to 1 - S, expanding another to 1/(1 ~ 8). These are 
shown in Fig. 5. The contributions arise from the second derivative of the crystal energy by 
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shear strain, and involve considerations of the changes of neighbour distances by the applied 
strain. The unsophisticated' power law' repulsion is considered for illustrative purposes only. 

As in the case of the cohesive energy proper, the theory of the elastic constants and their 
pressure dependence is not completely straightforward.23 A number of simplifying assumptions 
must be made for each material considered. We shall however consider some of the structural 
information which may be derive.d. from the numbers in Table 1. The conventional modeP4 on 
which elastic constant calculations are based considers that the only important contributions 
arise from: (1) a long range coulomb energy (e.g. the Madelung term in ionic crystals), (2) the 
Fermi energy contributing principally to the bulk modulus in monovalent metals, but important 
to both shear and bulk moduli in polyvalent metals, and (3) a short-range repUlsive interaction 
between neighbouring closed shell ion cores. The usual treatment considers the short-range 
repulsion to depend only on I r I ' i.e. the forces are assumed central. The first group of elements 
listed in Table I is arranged in order of increasing complexity of the interpretation. 

Q 

[110] o 

c 

Sodium 

[001] .0 

c' 

a 

Fig. 5. Distortions appropriate to C and C' shears of a [110) 
crystal 

The C' shear is equivalent to compression along (100) exten­
sion (010) while maintaining constant volume 

The shear constants of sodium present the least difficult analysis.l7 The salient features of 
the sodium data are (1) the elastic anisotropy ratio CfC' does not depend on pressure, (2) the 
value of the shear strain derivatives is - 7·2. The zero-pressure values of the elastic constants 
are accounted for quite well by consideration of the electrostatic contribution alone. The 
theoretical value of the electrostatic contribution calculated by Fuchs35 on the basis of a model 
consisting of positive point charges imbedded in a uniform sea of negative charge is : 

C = Ke2Jr4 , C' = K'e2Jr4 

where K and K ' are geometrical constants, r is the lattice parameter, e the electronic charge. 
These were modified 36 to take i11to account variations of charge density in the atomic polyhedron, 
yielding: 

C = KZ2e2/r4 , C' = K'Z2e2r2 

where Z is the ratio of the charge density at the boundaries of the atomic polyhedron to the value 
which would obtain if the valence electron charge were uniformly distributed over the cell. The 
direct ion core interactions in a bcc metal make a positive contribution to C, a negative contribu­
tion to C' and would be expected from arguments given before, to contribute relatively more 
strongly to the strain derivatives. The observation of independence of elastic anistropy on 
volume indicates with certainty then that the ion core term may be neglected in tbis analysis. 

. d In C d In C' . . 
Numencally, one would expect dIn 'r = - 4 = dIn r 'If there were no re-distributIOn of charge 

within the atomic polyhedron wben tbe crystal was compressed. The observation that the strain 
derivative is equal to -7·2 instead of -4 indicates that, as sodium is compressed, the cbarge 
density at the cell boundaries increases faster than IjV. Analytically this may be expressed as the 

d InZ 
volume dependence of Z, d In V = - O· 54, or in terms of the volume-dependence of the value of 

the normalised wave function of the lowest electronic state at the cell boundary, uo(;c), since 
- din Uo (ic) 

Z = I Uo (r c) I 2, d In V = - 0·27. Qualitatively this effect may be explained by the con-

sideration that the space within the cell, into which the electron can be compressed as the volume 
is reduced, is only the space between the ion core and the cell walls (even though the cores in 
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adjacent cells do not overlap), so the charge density in that space increases more rapidly with 
compression than would be the case if the electron charge could condense in the entire cell. 
This effect is predicted theoretically by Brooks,37,38 but the experimentally observed effect is 
about twice that of Brooks' theoretical prediction. 

Lithium . 
Jain18 has measured the pressure-dependence of the elastic constants of lithium. Since 

Cohen & Heine39 discuss experimental evidence which indicates deviations from sphericity of the 
Fermi surface In lithium, it was of interest to examine the effects of the Fermi contribution to the 

pressure dependences of the elastic constants. Jain's measurements yield values dd In C = - 4'1, 
Inr 

din C' . d In C' d In C h f d ' . 
din r = . - -2,8. The observ~tlOn dIn r < din r suggests at once t e presence 0 a rrect Ion 

core interaction, but this can be ruled out by the fact that the ratio of nearest-neighbour separa­
tion to ionic diameter is even greater in lithium than in sodium where no ion core effect was 
found. Jain considers the Fermi contribution to the elastic constants using a modified form of 
the model applied by Jones40 to the elastic constants of ,a-brass. The analysis indicates (1) the 
charge-density ratio Z at the atomic cell boundaries increases with decreasing volume as in 
sodium, but at about half the rate observed in sodium, (2) that the Fermi surface which at zero 
pressure bulges out about one-third of the distance between the free electron sphere and the [110]. 
planes of the first Brillouin zone41 becomes more distorted as the pressure is increased. The sign 
and magnitude of the effect is in good agreement with the work of Blume42 on the theory of the 
shear constants in lithium and with Ham's theoretical predictions of the shape of the Fermi 
surface. The value of the energy gap across the (110) Brillouin zone planes inferred from these 
data using the model of Cohen & Heine, 0·128 Rydbergs (Ry), compares favourably with 
theoretical estimates ranging from 0·153 to 0·228 Ry.41 With Li, important information about 
the Fermi surface and its change with volume is obtained in a simple experiment, information 
extremely difficult (if not impossible due to the phase transformation in cooling), to obtain 
directly, e.g. by de Haas- van Alphen measurements carried out at high pressure. 

Aluminium 
As far as one is concerned with a study of the Fermi contribution to elastic constants, 

aluminium is the classical example, for which the theory has been worked out by Leigh.43 
Schmunk & Smith15 reworked the theory with better values of the elastic constants of aluminium, 
and in addition considered the effects of pressure. Two of the three valence electrons in aluminium 
can occupy the region contained by the first Brillouin zone (shown in Fig. 6), but the third must 
overlap into the second zone at points indicated by Sand H on the Figure. The shear elastic 
constants are made up of(1) an electrostatic contribution ofthe form C = K Z2e2/r4, C' = K'Z2e2/r4 
as for sodium and lithium, and (2) the contribution due to change of the Fermi energy by a shear 
strain. The ion core interaction is supposed to be an unimportant contributor because of the 
large ratio of nearest-neighbour distance to ionic diameter. The Fermi contribution is broken 
down into a contribution from the full zone, evaluated with use of a free-electron expression for 
the energy, plus a contribution due to the electrons in overlap positions Sand H. In considering 
the contribution of the latter, one must take into account relaxation effects caused by redistribu­
tion of the electrons during shear by a transfer from higher to lower energy positions, an effect 
illustrated in Fig. 7b and 7c which shows a cross-section- o£~Brillouin zone and the shifts of 
electron populations with applied C and C' strains. Table HI -shows values of these contributions 
to the elastic constants. 

Fill. 6. The Brillouin zone of aluminium, showing positions 
of electron overlap 

(0) 

s 

H 
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Fig. 7. Schematic representation of the Brillouin zone and overlap electron 
populations of aluminium in various strains states 

Electron-overlap populations for the square and hexagonal faces are 
denoted by Sand H respectively. 

(a) Unstrained, (b) C' shear strain, (c) C shear strain, and 
(d) negative volume strain. 

as shown in Fig. 7d. Numerically the values correspond to approximate fractional changes 
0·002 and - 0·03 respectively in nH and ns for a pressure of 10 kb. (nH and ns are the number of 
electrons per atom overlapping each pair of hexagonal or square faces of the Brillouin zone). It 
is difficult quantitatively to assess the changes of interpretation brought about by use of a' more 
modern' Fermi surface, that described by Harrison.44 Qualitatively however, the Harrison 
Fermi surface which implies nearly free electrons leaves the difficulty of accounting for the 
observed elastic isotropy C ~ C in aluminium. A completely' free electron' model, i.e. a model 
giving a spherical Fermi surface, leads to zero Fermi contributions to the pure shear stiffnesses. 
If the Fermi contribution to C and C' is negligible, then the anisotropy ratio C/C would have 
approximately the value obtained by consideration of the electrostatic contributions only, i.e. 
about 9 instead of the experimentally observed value 1·22. 

Table ill 

COllstitutioll of the present observed shear stiffnesses of aluminium 
as explained by Leigh's model 

Contribution 

Coulomb (CE) 
Fermi : Full zone 

Hexagonal overlap 
Square-face overlap 

Net Fermi (CF) 
Total (observed) (CE + CF) 

(units are 1012 dyne cm.- 2) 

0·450 
-1·320 

0·047 

C 

1·106 

-0·823 
0·283 

0·1500 
0·5400 

-0·5817 

C' 

0·1235 

0·1083 
0·232 

The notable feature of Leigh's theory is that it accounts for the near equality of C and C' which 
is remarkable when one considers that the electrostatic contribution taken alone has an anisotropy 
ratio C/C of about 9. Table IV contains the contributions of these terms to the strain derivatives 
of C and C. Qualitatively this interpretation indicates (1) as in the cases of sodium and lithium, 
the charge density at the boundaries of the atomic polyhedra increases as aluminium is com-

d InZ 
pressed. In terms of the volume dependence of Z, d In V = - 0·78, a larger value than found 

in sodium; (2) as the pressure is applied to the specimen, part of the electrons in states over­
lapping the square faces of the Brillouin zone transfer to states overlapping the hexagonal faces 

Table IV 

Values for aluminium of the contributions ( - dCJd In r)/C to the 
derivatives ( - d In Cjd In r) of the shear stiffnesses C and C' 

The quantities (-dCj/d In r)/C arise from the contributions, Cj which are named. 

Contribution C C' 

Coulomb term 34·13 4·65 
Net Fermi term assuming n constant -14·52 2·32 
Contributions from electron transfer 

with volume strain 
Hexagonal overlap - 0·17 1·59 
Square-face overlap - 1·62 6·63 

Total (and observed) 17-8 15·2 
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Copper, silver and gold 

The monovalent noble metals copper, silver and gold represent a class of metals in wlllch the 
elastic properties are dominated by the overlapping of nearest-neighbour ion cores. It is well 
known that these repulsive short-range interactions must be introduced to account for the low 
value of the observed compressibility. Almost all of our experimental knowledge of the ostensible 
form of the ion core interactions is derived from the elastic constants. The short-range interaction 
is an important one in the theory of diffusion in copper and several workers in this field have 
followed45- 47 the procedure of evaluating the repulsion parameters from the observed values of 
the elastic constants. Tills is reasonably satisfactory for the purpose, but attempting to account 
for the elastic constants of copper in detail in terms of a two.:iparameter exponential repulsion is 
less satisfactory. Tills failure is seldom pointed out explicitly, but it becomes more and more 
apparent when one examines the single-crystal elastic stiffness of the similar metals silver and gold. 
As pointed out earlier, the importance of a short-range interaction becomes more accentuated as 
one examines its contribution to each of the sequence: binding energy, the equilibrium condition, 
the elastic stiffnesses and finally the pressure derivatives of the elastic stiffnesses wlllch will be 
determined almost entirely by the ion core repulsions in these metals. The original goals of the 
copper, silver, gold investigation which was our first high-pressure venture, were twofold. First 
we wished to obtain volume dependencies of the elastic constants for use in 'correcting' to 
constant volume experimental data on effects of dilute alloying on elastic constants, i.e. to 
separate out the specific effects of alloying, from the effects due to change of lattice parameter 
on alloying. An example of the use of this correction is found in an article by Schmunk & Smith 
on elastic constants of copper-nickel alloys.48 The second goal was to study the ion core inter­
actions in detail under the favourable conditions that they made the largest contributions to the 
quantities measured. It was assumed that the stiffnesses were made up by (1) the electrostatic 
contribution and (2) the ion core interaction. At that time there was much less evide.nce 
than at present indicating the distortion of the Fermi surfaces from spherical. Accord­
ingly it was assumed that EF made no contribution to the shear constants or their strain 
derivatives, but that it did contribute to the bulk modulus. Inclusion of a Ferrni term would 
not be very likely to affect the qualitative conclusions reached in our interpretation. Briefly, the 
study of the ion core interactions at close range, i.e. via the pressure derivatives of the elastic 
constants reveals serious failure of the assumption made in conventional elastic constant theory 
that the ion core interactions are central, i.e. that they act along the line between ion core centres. 
The failure becomes much more apparent as one considers in turn the behaviour of copper, 
silver and gold. The failure of the assumption of centrality of the interactions is so severe, that no 
reasonable extension may usefully be made of the usual consideration that the bulk modulus of 
the electron gas is responsible for failure of the Cauchy relations to hold in these metals. 

Germanium and silicon 
No thorough treatment of the elastic constants of the diamond-like semiconductors in 

terms of their cohesive energy has been advanced. Implications regarding their thermal pro­
perties are discussed later. 

Rubidium iodide 
This salt is in tills list although measurements on it are not complete at tills time. Buerger 

proposes a mechanism of finite C44 type strain to describe the CsCI- NaCI structure transitions.49,19 
We thought it possible that the transformation in rubidium iodide (RbI) took place by loss of 
stability with respect to a C44 shear, i.e. that C44 would vanish at the transformation pressure as 
apparently ··happens in AuCd. Merely a 10 % decrease in C44 is observed in compressing to the 
transformation pressure, ruling out that possibility. It is hypothesised that the structure becomes 
unstable by the vanishing of one of the short wave-length lattice frequencies in a mode of the C44 

type (transverse acoustic [100] in more usual nomenclature). The thermal diffuse scattering of 
X-rays by RbI as a function of pressure is now being examined and, if the hypothesis holds, a large 
change is expected in thermal diffuse scattering from the modes whose frequency vanishes at the 
transformation pressure. Also, there should be a negative anomaly in the thermal expansion 
coefficient of RbI at low temperatures, due to negative dependence on applied pressure of those 
mode frequencies, as will be more generally discussed later. 
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(3) Thermal aspects 
In addition to the use of the pressure-dependence of the elastic constants to augment other 

investigations of cohesion in solids, the data are directly applicable to the study of certain aspects 
of anharmonicity of lattice vibrations. Consider the acoustic wave velocity and its pressure 
dependence in terms of the dispersion curves for lattice vibrations of a solid as revealed in the 
plot of the frequency vs. I k I where k is the wave vector for some direction of propagation in the 
crystal (see Fig. 8). The initial slope of such a curve is the velocity of an acoustic wave offrequency 
low compared to the cut-off frequency vrnax • Typical cut-off frequencies are ....., 1013 cycles per 
second so that our lO-mc search wave is very near the origin on the scale of Fig. 8 and information 
derivable from it will only be applicable over the region of the v vs. I k I curve non-dispersive at 
all pressures considered. Consider now the behaviour of a normal mode i lying in the non­
dispersive region (see Fig. 8), i.e. a plane standing-wave having a fixed number of nodes between 
two atom sites a distance L apart and a frequency Vj . As the crystal volume is changed by 
application of pressure, the mode frequency will change for two reasons: (1) the sound velocity, 
hence the slope of the curve, will change, and (2) the value of I k I will change because the 
reference lattice sites are compressed with the crystal. Analytically one can express this depen-

dence in terms of Yj == - ~ : ~, from which a connection may be made to the pressure depen­

dence of the elastic constants by the relations: Vj = vjk j where Vj is the wave velocity appropriate 

.-------------~ Vm 

Fig. 8. Acoustic lattice vibration dispersion curves for a longitudinal 
mode (LA) and a transverse mode (T A), showing change of 
the transverse acollstic (T A) curve caused by all applied pressure 
P" and the slllft ill frequency of the i'tlz /lormal mode 

The horizontal line, cutting off the frequency at y = kT/h 
indicates the fact that at low temperatures, only the modes 
with less than this frequency are active 

to type of wave, k j is the reciprocal of the wavelength of the mode under consideration, 
Vj = e C;J p)t where Cj is an elastic stiffness appropriate to the wave type, p the crystal density, and 

dIn C j B. dC j • d in k j 1 d in p . 
finally -- = - --d- . Geometncally d- l V = - -3' -d 1 V = - I. PerformJl1g the 

d In V Cj • P n n 

I din Cj 1 
necessary derivatives and combining terms yields Yj = -"2 . d in V - 6' an equation resem bling 

the familiar expression* due to Slater,5 but with C j replaced by BT , the bulk modulus, and derived 

d 
a- . . 1 d In BT 1 .. f 

under somewhat illerent restnctIOns: Ys = - 2 -d In V - 6' Note that applIcability 0 the 

Slater Y depends sensitively on independence of Poisson ratios on volume. If one has only a set 
of lattice vibrational modes Yj contributing appreciably to the heat capacity of the crystal at the 
temperature under consideration, i.e. the electronic or other contributions may be neglected, a 
good approximation in insulators and semiconductors, one can, following Slater,5 or Peierls50 

assume that the free energy of the crystal can be written: 
F = UoeV) + kTIn Zvjb. where Uo(V) is the internal energy of the crystal at absolute zero, 

* Slater's expression Ys = a./a,' - 213 may be shown to be identical to this expression. Consider a, and a. defined 
by !::, VI VO = a,P + a.P', a form in which many of Bridgman's experimental results are stated. Then by solving 

(OV) din BT (OP) for P and evaluating BT = - V oV T and d In V with care to differentiate BT(V) = - V i) V T, 

(OP) ( a. 2 ) ( d In BT) . not BT(V) = Vo oV T, a
I

' -:3 and - 1/2 d In V - 1/6 are seen to be eqUivalent. 



61 DANIELS & SMITH-ELASTIC CONSTANTS VARIATION 

and is assumed to include the zero point energy. Uo is assumed to have no explicit temperature 
dependence. Zvib. is the quantum mechanical sum over states of the lattice vibrational energies. 
By elementary statistical mechanics, it can be shown that Griineisen's gamma, defined by YOr = 
IXBT VIC. (where IX is the volume coefficient of thermal expansion, BT the bulk modulus and Vand 

1: C·y 
C. the volume and heat capacity per mole), is given in terms of the Yi by YOr = 1:;vi I, where C.i 

is the Einstein heat capacity of the i' th normal mode at the temperature under consideration and 
the summation is made over all modes. At temperatures T ~ h Vmax Ik, all modes will have heat 
capacity k and YOr = y, the average of Yi over all modes. In the limit of very low temperatures 
on the other hand, only the low-frequency acoustic modes will contribute to the heat capacity, 
the least stiff mode types being the most important contributors. In terms of the dispersion 
curves shown in Fig. 8, it is seen that if the occupation is cut off at v = kT/h, then for the lower 
stiffness modes (lower slope of v vs. k), a larger number of states will be contributing to the heat 
capacity; hence the Yi of these states will contribute relatively more heavily to YOr' Experimen­
tally (see Table V), it is most commonly observed that the lower stiffness modes have smaller Yi> 
hence YOr should decrease at low temperatures. This has been considered by Sheard51 for a 
number of materials, and since one can show29 that if the low-temperature limit of Y be Yo, then 

Yo = ~ : ~ ~o • Then it is possible very simply to use deLaunay's tables52 for E> (Cu, C12, C44, p) 

together with values of the C's and d CjdP's in order to evaluate the Yo, sometimes with surprising 
results,53 as in the case of germanium and silicon54 indicated in Fig. 9. Of course, one expects 
this value to be a valid one only in the case of materials in which one can assume negligible 
contribution of electronic heat capacity, i.e. in the case of non-metals. The generalisations of 
this are discussed by Bernardes & Swenson. 55 It is useful also to examine and compare values 
of Y derived with the assumption that the volume-dependence of the frequencies of a particular 
mode type, e.g. transverse acoustic, is the same in the dispersive region as that for the low-fre­
quency modes. This involves averaging of three Y i (one longitudinal, two transverse) over all 
directions in the crystal. Some values of yare shown in Table V comparing YOn Y., and .y derived 
from shear and longitudinal acoustic measurements. Agreement of y with YOr is excellent in 
most cases, indicating that probably the gammas for modes in the dispersive region do not differ 
widely from those . measured in the low frequency part of the lattice vibrational spectrum. A 
spectacular exception to the latter is provided by the temperature dependence of YOr in the case 
of the diamond-like structures, e.g. Ge, Si, InSb, as shown in Fig. 9. In these a very pronounced 
dip in Y Or appears at about a tenth of the Debye temperature. The interpretation56 of these 
negative anomalies is that the dispersive part of the spectrum of the transverse acoustic modes 

Table V 
d 10 V· 

Yi = - d in ~ for various long wavelength acoustic mode types 

Values of the elastic constants appropriate to these modes are given in units 1012 dyne em- I. Comparison is made 
between the average y, for these simple modes, the Slater Y and the Grtineisen y, YOr = a.BT V/Cv, showing the better 
agreement between YOr and Ys. Y for NaCl and KCI are taken from Sheard" and represent an average of Yi over 
all directions of propagation. E> is the Debye temperature. 

a.BTV1Cv Slater 
Crystal C'l1 C •• C' jI' ll Y .. Y' 

-
Y = YOr Y Yo T/E> 

Na 0·11 0·42 0·0058 1-36 1-06 1·06 1·16 1'16 1·5 1·9 
Cu 2·25 0·75 0·23 2·30 1·92 1·49 1·90 1·96 2·55 1·80 0·9 1·97 
Ag 1-60 0·46 0·15 2-69 2-38 1·96 2-34 2·40 2·85 1·3 
Au 2·30 0·42 0·15 3·00 3·38 2·31 2·90 2·90 2·93 1·8' 
Al 1-19 0·28 0·23 2·43 2·80 2-36 2·53 2·27 2'31 2·90 0·8 

2·57H 
Ge 1·56 0·67 0·40 1·27 0·58 0·17 0·72 .....,()·73 2-1 0·49 .....,()·5 
Si 2-11 0·79 0·50 1·35 0·33 - 0·13 0·51 .....,()·45 2·5 0'25 .....,()·45 
SiO. fused -2·40 ...... - 2·08 ...... -2·08 - 2'19 .....,()·oo 
NaCI 0·486 0·128 0·184 1·99 0·14 2·89 1·60S 1·60 1·52 1·23 
KCl 0·307 0·063 0·165 1·81 - 0·87 3·03 1'57S 1·48 1·26 0·53 
RbI 0·171 0·028 0·112 -1 ·15 

S taken from Sheard·' and H average by Houston's method 
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Fig. 9. Variation of Griineisen factor with reduced temperature 
T jOoo forgermanium (0 00 = 4000K), silicon (000 = 495°K) 
and indium antimonide (000 = 214°K) 

in these materials exhibits behaviour qualitatively like that shown on Fig. 8 for the transverse 
acoustic mode, i.e. those mode frequencies in the dispersive region which exhibit an anomalous 
volume-dependence, their frequencies decreasing as the crystal is compressed. This behaviour 
of YGr, quite general in the materials with zinc blende structure,57 stresses a fundamental limitation 
of the acoustic method for examining simple anharmonicity revealed by the low-frequency 
acoustic y's, namely that experimental restrictions placed by the frequency limit of the measure­
ments, ~ 10 mc, confine the obtainable information to the non-dispersive region. An ideally 
direct means of circumventing the restriction will be to perform slow-neutron diffraction58 
experiments on crystals in the high-pressure ambient. As yet this is a virgin field for endeavour 
which may not present impossible difficulties when tried. It is also possible that thermal diffuse 
scattering of X-rays by materials at high pressures may provide information about changes of the 
shape of the vibrational spectrum in those materials where large charges are to be expected. We 
are trying to estimate changes in thermal diffuse scattering in RbI crystals as the NaCI -+ CsCI 
structure transformation pressure is approached, in order to verify our hypothesis oflarge negative 
Y's for certain TA modes (see section headed Rubidium Iodide). A further simple experiment to 
investigate the volume dependence of the modes, with propagation vector extending to the [100] 
zone boundary in germanium is also being tested. This experiment seeks to measure directly the 
pressure shift of the phonon kinks in tunnel diode characteristics at very low temperatures,59 thus 
using a simple electrical measurement to give values of y for these modes, especially to verify the 
qualitative analysis that the y's of those transverse acoustic modes will be negative. 
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